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ABSTRACT
Stix is a platform managing emerging large-scale broadband
wireless access (BWA) networks. It has been developed to make
it easy to manage such networks for community deployments and
wireless Internet service providers while keeping the network man-
agement infrastructure scalable and flexible. Stix is based on
the notions of goal-oriented and in-network management. With
Stix, administrators graphically specify network management ac-
tivities as workflows, which are deployed at a distributed set of
agents within the network that cooperate in executing those work-
flows and storing management information. We implement the
Stix system on embedded boards and show that the implemen-
tation has a low memory footprint. Using real topology and log-
ging data from a large-scale BWA network operator, we show that
Stix is significantly more scalable (via reduction in management
traffic) compared to the commonly employed centralized manage-
ment approach. Finally we use two case studies to demonstrate the
ease with which Stix platform can be used for carrying out net-
work reconfiguration and performance management tasks, thereby
also showing its potential as a flexible platform to realize self-
management mechanisms.

Categories and Subject Descriptors: C.2.3 [Network Opera-
tions]: Network Management; C.2.1 [Network Architecture and
Design]: Wireless Communication; D.1.7 [Visual Programming]

General Terms: Design, Management, Experimentation, Lan-
guages

1. INTRODUCTION
There is a growing recognition of the need for universal broad-

band across the world with focus on rural/remote areas with low
user densities and that on developing countries with poor or non-
existent core network infrastructure. It is in this context that broad-
band wireless access technologies (e.g., long distance WiFi [1],
WiMax [2]) are seen as a cost-effective alternative to their wired
counterparts for bridging the digital divide. The availability of low
cost commodity wireless equipment, spectrum regulatory reforms
and advances in communications technology have all contributed to
this perception and boosted the growth of BWA network operators,
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Figure 1: Generic broadband wireless access (BWA) network
model, a two tier network: backhaul tier of transmission sites inter-
connected using long distance point-to-point (PTP) wireless links;
access tier providing connectivity to customer premises equip-
ment (CPE) via a point-to-multipoint (PMP) link from the base
transceiver station (BTS) located at a nearby transmission site.
Note that there could be multiple BTSs at a transmission site, each
using a sector antenna. It is also possible that some CPEs may act
as relays for other CPEs that are outside the coverage area of a BTS.

usually referred to as Wireless Internet Service Providers (WISPs),
around the world. Fig. 1 illustrates a generic broadband wireless
access (BWA) network model.

Expanding the reach of the Internet to connect the next (few)
billion people would mean potentially large-scale BWA networks.
Examples include: NGI SpA’s BWA network in northern Italy with
more than 50,000 subscribers, one of the largest such deployments
in Europe [3]; AirJaldi network in northern India with around
10,000 users [4]; and the planned large-scale WiMax roll out in
Africa [5].

Network management encompasses a wide range of activities as
captured by the ISO FCAPS model, which defines five areas of net-
work management: fault, configuration, accounting, performance
and security. Our focus in this paper is mainly performance, and
fault and configuration management. These include activities such
as monitoring for performance bottlenecks and faults via device
level statistics collection, and upgrading the software on managed
devices (e.g., PTP devices, BTSs, CPEs). Note that BWA networks
(and more generally, wireless networks) are inherently complex to
manage [6], given the wide range of parameters and environmental
phenomena (e.g., radio propagation, mobility) that can affect net-
work operations.

BWA networks can also be quite diverse from rural/community
networks to large-scale WISP deployments, so network manage-
ment platforms should be adequately flexible to suit a wide range of
deployment scenarios. However, in-band management (i.e., man-
agement traffic going over the production network being managed)
is one aspect that is common to all BWA network scenarios as a
dedicated management network infrastructure maybe infeasible or
impractical due to the additional cost and deployment overhead.
Consequently, management traffic contending with user traffic is
an issue and as such it is an overhead. This is time of concern
with network management systems in use today as they employ a



centralized management paradigm that puts most of the manage-
ment related intelligence at one location, typically called a network
operations center (NOC). The information about all the managed
devices needs to be continually available at the NOC for network
monitoring and control decisions. Clearly this becomes an even
bigger concern as the network size increases. We will use the term
“scalability” to refer to this issue.

Rural or community networks present an additional set of issues:
(a) Internet connection is often the most expensive part of the op-
erational expenses for such deployments, so it is not desirable to
have communication with the NOC interfering with the efficient
use of that precious bandwidth; (b) unreliable connectivity between
the NOC and the network being managed seen in rural networks
can render the centralized approach ineffective; (c) the number of
skilled personnel available to maintain such networks is limited (of-
ten, just one person from the community).

Simplifying network management is therefore crucial, more so
in developing regions as shown by the experiences by Surana et
al. [4]. Simplifying the specification of network management goals
is also key for effective distributed management (as outlined un-
der management by objectives paradigm in [7]). Finally, as net-
work size increases, the potential for using heterogeneous devices
increases too [4], so it is important to be able to seamlessly support
management of devices from different vendors.

In this paper, we develop a novel network management frame-
work and system called Stix, motivated by the above considera-
tions. Underlying Stix are two key principles: (1) goal-oriented
network management; (2) network is the NOC. Regarding the first
principle, goal-oriented means allowing the administrator to focus
on the network management objectives and the specification of as-
sociated activities rather on the low level details. To realize this
principle, Stix incorporates a high-level visual workflow-based
modeling language (referred to as StixL) to easily express net-
work management activities.

The second principle is realized by adopting a distributed coop-
erative agent management architecture for monitoring and control
that pushes the manager (called StixAgent) of a device being
managed closer to that device. A workflow that is designed using
StixL is converted into an XML file and disseminated to relevant
StixAgents in the network, which generate executable code on
the fly. This principle is essentially aimed at improving scalability
by dividing and distributing network management activities within
the management infrastructure. Making the management hierarchi-
cal and introducing layers of abstraction are well known strategies
to tackle network management related scalability and complexity
(e.g., arising from heterogeneity) issues [7]. In §3, we elaborate
on the types of network management activities that benefit from
the Stix approach to reduce management related network traffic;
briefly, any activity that can be divided and delegated is a prime
candidate.

Another unique aspect of Stix is that logs generated as a re-
sult of executing network management activities (e.g., monitoring
statistics) reside in the network at StixAgents and are replicated
locally around the source for high availability using a mechanism
called Sprinkle that implements a “log overlay” within the network.
Management data stored on the log overlay is available to the net-
work administrator for on-demand and asynchronous retrieval via a
web based graphical user interface with wiki-like syntax and SQL-
like querying called StixView, thereby decoupling the execution
of a network management activity from the retrieval of its results.
Stix also provides a hardware abstraction layer in the form

of a device manager within each StixAgent to support devices
from multiple vendors. Finally, the Stix framework is technology

independent, so it can be employed for managing IP-based BWA
networks using any underlying wireless communications technol-
ogy (e.g., outdoor WiFi, WiMax, 4G/LTE).

In summary, the Stix distributed management architecture fa-
cilitates in-network execution of monitoring and control operations
as well as in-network storage of management data. Thus it reduces
the reliance on the central NOC for management operations and
storage of management data. This, however, does not mean com-
pletely eliminating the NOC and the network administrator — they
are still needed for specifying network management activities, net-
work visualization/analysis, software updates, billing and account-
ing operations. Although our context is BWA networks, the Stix
approach can be applied more widely, e.g., in wired and sensor net-
work settings.

A key contribution of this paper is the implementation of the
Stix system, including the StixAgent on embedded boards.
We demonstrate the ability of Stix to support management of het-
erogeneous devices. Using the network topology and logging data
from our partner ISP, NGI SpA, we evaluate the scalability and ef-
ficiency of the Stix distributed monitoring and control approach
relative to the traditional centralized SNMP-based management ap-
proach and show that Stix approach is significantly better. We
also present two case studies using the implemented Stix sys-
tem to demonstrate the ease with which it can be used for realistic
network management activities such as seamless device reconfigu-
ration and adaptive spectrum management.

In contrast to the commonly used centralized and/or vendor-
specific network management tools (e.g., OpenNMS, Nagios, Al-
varion Star Management Suite, Motorola Prizm), Stix enables
distributed and scalable management of large scale multi-vendor
BWA networks. Simplifying the specification of network man-
agement activities using graphical workflow-based modeling lan-
guage is a feature unique to Stix. Existing work on BWA net-
work management tends to focus on decision making processes in
the context of self-management [8, 9] without regard to the under-
lying implementation platform. No such platform exists currently.
We provide a flexible framework and platform that fills this void,
thus enabling self-management of BWA networks. Although self-
management per se is not the focus of our work, the case studies as
part of our evaluation do demonstrate the feasibility of using Stix
for self-management processes.

The remainder of this paper is structured as follows. §2 reviews
related work. An overview of the Stix framework and system
is given in §3, and its design and implementation are described in
§4. Its efficiency and scalability using data from a real large-scale
WISP as well as realistic case studies are presented in §5.

2. RELATED WORK
Pavlou [10] offers a good survey and classification of manage-

ment approaches that have appeared over the years. Broadly these
fall under two categories: management by remote invocation and
management by delegation. These two categories roughly corre-
spond to centralized and distributed management approaches, re-
spectively. Remote invocation based approaches can be further
divided into manager-agent based (e.g., SNMP, NetConf) or dis-
tributed object and service interface based (e.g., CORBA, JRMI,
web services). The essential idea behind management by delega-
tion is to move the managing entity closer to the managed device.
Stix approach falls between the two extremes of management
by delegation approach (i.e., manager-agent based and full mobile
code based), so can be referred to as a distributed cooperative agent
based approach [11].

When it comes to practice, most network management platforms



are centralized (manager-agent based) and based on SNMP (Sim-
ple Network Management Protocol), making it the de facto stan-
dard. While SNMP allows for distributed monitoring with multiple
servers (managers) for load balancing and fault tolerance, it does
not as such reduce the communication overhead, so it is similar
to the default single manager setup from our perspective. Stix,
on the other hand, deploys managers in the form of StixAgents
inside the network close to the managed devices (within one hop)
with the view of cutting down the communication overhead.

There exists both open source tools (e.g., OpenNMS, Nagios)
and commercial tools. In the latter set, many are vendor-specific
(e.g., Alvarion Star Management Suite, Motorola Prizm, Ubiquiti
AirControl, Meraki’s centralized management solution). Though
a few multi-vendor tools exist such as AirWave, none of them are
for BWA networks. Customizable Wireless Management System
(CWMS) [12] proposes to manage heterogeneous BWA networks
composed by multivendor devices for both WiFi and WiMax by us-
ing metadata expressed in XML to define a glue between different
types of devices, but it is a centralized system.

There is limited work on BWA network management [8, 9],
mostly focusing on autonomic or self management. These works
do not consider the underlying implementation platform for auto-
nomic management in general. This is evident from the lack of
usable software implementations from these efforts. Even those
that build demonstration prototypes are too naive. For instance,
in [8], software running on their access points to implement auto-
nomic processes is in fact statically pre-compiled and pre-deployed
C programs, which are inflexible and hard to run in heterogeneous
environments; moreover, it does not allow code reuse. In contrast,
one of the contributions of our work is to offer a flexible platform to
facilitate autonomic management as demonstrated by our case stud-
ies in §5. However, autonomic management by itself (e.g., alarm
correlation, fault diagnosis, intrusion detection) is not the focus of
our work.

As already noted at the outset, the work of Surana et al. [4] is rel-
evant for our work in the sense that it provides a concrete context
where simplifying network management and catering to heteroge-
neous devices are essential. The authors in [4] provide detailed
description of the challenges they faced in terms of operational sus-
tainability from their experience with two BWA deployments both
having thousands of users. Coming to the network management
component, they essentially use a centralized approach via their
push-based PhoneHome monitoring mechanism. In contrast to our
work, their focus is more on low level issues such as ensuring sta-
ble power. There also exists technology specific performance and
fault management research for scenarios different to ours, includ-
ing infrastructure WLANs [13, 14], mesh networks [15] and ad hoc
networks [16].

Our workflow-based modeling language (StixL) is at a high
level similar to the approach adopted in the Click modular router
architecture [17]. However, our focus is on device monitoring
and control, whereas Click’s focus is on packet processing. Also
Click’s “workflows” are data-bound in that they are triggered on a
per-packet or per-frame basis, whereas ours are event-bound and
so are fired after a condition (e.g., timer, value of a variable reach-
ing a threshold, message arrival) becomes true. Also the notion of
using visual programming languages in general is not new (e.g.,
OPNET), but our definition and use of a visual programming lan-
guage (i.e., StixL) for goal-oriented network management is.

3. STIX OVERVIEW
We consider the problem of developing a network management

platform for large-scale broadband wireless access (BWA) net-

works. As already described, our design requirements for such a
platform are as follows: (a) Simplified network management to al-
low the network administrator focus on management goals rather
than burden him with the tedium of low level details. This is espe-
cially important in community deployments and developing region
settings; (b) Given that management in BWA networks is done in-
band, the management platform has to keep the overhead low, thus
scale better to large deployments; (c) Reduced dependence on cen-
tral network operations center (NOC) can potentially let the man-
agement system function smoothly even during periods when the
NOC is unreachable; (d) It has to seamlessly support multi-vendor
devices, which are likely to be the rule rather than the exception in
large-scale deployments; (e) Lastly, the platform should be flexible
enough to facilitate self management.

We present a novel network management platform for BWA net-
works called Stix that meets the aforementioned requirements.
Stix design is based on two key principles: (1) goal-oriented
management; (2) network is the NOC. Following the first prin-
ciple, the Stix system allows the administrator to describe the
goals of the network management activity by modeling processes
as workflows, thus meeting requirement (a) above. For this pur-
pose, we introduce the workflow language StixL. A workflow is
defined as a sequence of tasks that need to be performed in order
to achieve a high level network management goal (e.g., upgrade
firmware on all CPEs). A workflow can be applied to a specific
device or to a set of them with the aid of associated qualifying ex-
pressions in a purpose-designed query language; it is formed by
combining pre-defined elements such as decision gateways, event
triggers and purpose-written code called tasks that takes the form of
pluggable boxes to facilitate code reuse. StixL also helps realize
a distributed management architecture by providing a flexible way
for specification of network management activities that are actually
executed at management entities inside the network.
Stix employs a distributed cooperative agent-based architec-

ture to realize the second principle, thereby meeting requirements
(b) and (c). Fig. 2 compares the Stix distributed management ar-
chitecture with the traditional approach. Essentially, to satisfy a
network management goal, Stix deploys a corresponding work-
flow to the appropriate set of management entities (referred to as
StixAgents) situated at transmission sites, which execute the
workflow locally and usually upload the results to the log overlay
using a replication mechanism called Sprinkle. Log overlay is in
other words an in-network overlay storage system for keeping the
logs (e.g., monitoring statistics). Log overlay is asynchronously
queried via the StixView web interface as needed by the ad-
ministrator to fetch the monitoring results, network health status
updates and so forth. Thus the Stix system shifts the burden of
monitoring, control and storage from the NOC to StixAgents
via workflows and log overlay store, thus reducing the dependence
on the NOC; the NOC is only used for a limited set of opera-
tions such as software updates, network visualization, billing and
accounting. Hardware abstraction layer within each StixAgent
helps meet requirement (d), and all the above components in Stix
collectively satisfy the last requirement (e).

We now discuss the types of network management activities that
can lead to reduction in management traffic using Stix. It is
worth noting that event based management is more scalable and
responsive compared to the repeated polling based approach com-
monly used by network management systems [7]. Stix naturally
supports event based management as StixL workflows are event
driven. Stix also realizes management by delegation. There are
a wide range of network management activities that can be dele-
gated to other management entities or agents in the network such as
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Figure 2: Stix management architecture vis-a-vis traditional centralized architecture.

logging/deduplication/correlation of events, polling of devices for
statistics, preprocessing of statistical information and software up-
grades; these span all areas of network management from fault and
performance management to configuration and accounting man-
agement [7]. We consider the specific case of firmware upgrades in
our evaluation (§5.1.1). A different way to identify cases benefiting
from Stix is to look at network management activities as a combi-
nation of monitoring and control (especially true for performance
and fault management). All such activities that can be done in a
self-managing manner as a collection of workflows executing on a
distributed set of agents can gain from using Stix. Even activities
that are inherently centralized and require polling may benefit from
in-network processing and aggregation (e.g., usage data for billing
purposes). In-network storage and on-demand retrieval of manage-
ment information further contributes towards system scalability as
typically a network administrator is interested in querying a small
portion of a network (e.g., a transmission site or a subnet).

In the following, we describe the design and implementation of
each component of Stix.

4. STIX SYSTEM DESIGN
AND IMPLEMENTATION

4.1 StixL: a visual language for describing
network processes

From our perspective, a ‘network process’ is a set of activities
performed during the network lifecycle. Example of processes are
routine software upgrades, periodic reporting of link status, emer-
gency routing reconfigurations and so forth. We believe that for
a network management scheme to be successful, the administrator
must be able to focus only on the operational goals and to express
them in a natural language. Our proposal StixL is a visual pro-
gramming language that enables network processes to be described
graphically, allows software reuse and hides the complexity of deal-
ing with heterogenous hardware.
StixL is loosely derived from the Business Process Modeling

Notation (BPMN) [18], a graphical representation developed by
the Object Management Group for specifying business processes
as workflow. We adapted the concepts from the business commu-
nity to the specific wireless networking domain. The language is
composed of only 17 elements, shown in Fig. 3, which are used in
flowchart-like representations called workflows.

Round symbols are events, and can be classified into three cat-
egories: ‘start’, ‘intermediate’ and ‘end’. Start events trigger the
execution of a workflow using timers, incoming messages or con-
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Figure 3: The StixL language elements.

ditions. Intermediate events can be used to send and receive mes-
sages, to log activities or control the execution flow via error han-
dling. Finally, ‘end’ and ‘terminate’ events determine the end of a
workflow execution.

A core language concept is represented by the ‘task’ element.
These are elementary units of work (e.g. a network ping, a reboot
command, routing control functions) and are implemented as hot-
pluggable Java classes. In Stix, the administrator is presented a
library of common tasks that can be (re-)used in workflows. This
library can be continually expanded by writing new tasks or by
importing them from 3rd parties.

A workflow is contained in a rectangular pool element (Fig. 3).
This has an associated query string, which lets the administrator
specify the set of devices that fall within the scope of the work-
flow. The query is expressed in a well-defined syntax, which allows
queries to be evaluated against the properties of a particular device.
As an example, the query ON devicemodel=’VendorA’ AND
uptimedays>’10’ DO will cause the associated workflow to
apply to all devices of model ‘VendorA’ with uptime larger than
10 days. We note that while a workflow is executed separately for
each device that matches the query executed at the corresponding
StixAgent1, a single execution can affect more than one device
by using the “message send/receive” events. Additionally, each

1In Stix, each managed device comes under the purview of a
unique StixAgent. For example, a CPE is typically managed
via the StixAgent attached to the transmission site with a BTS
that the CPE is associated with.



(a) Repository view (b) Editor view

Figure 4: Two sample screenshots of the StixGUI in action.

workflow has an associated metadata information which includes
a globally unique identifier, a revision counter, and optional author
names and notes. Metadata also includes option to limit the tempo-
ral validity of a workflow (e.g., “don’t run before...” and “don’t run
after...”).
StixL programs are coded visually using a graphical user in-

terface, which generates an equivalent text serialization in XML
format. An XML Schema is used to parse and validate workflows
that are exported from the GUI and exchanged between agents.
StixGUI is a web-based application that runs on a central-

ized server and allows the administrator to design and deploy new
workflows and edit existing ones. It is divided into three inter-
faces: a topology view, a repository with the list of existing work-
flows and the actual workflow editor. The topology view shows
the StixAgents deployed on the network, with links showing
the overall network topology. It is also possible to see the various
devices managed at each site (PTP devices, BTSs, CPEs, etc.).

The repository in Fig. 4(a) illustrates all the workflows exist-
ing in the network, their name, a brief description, their revision
number and other optional details. From this screen it is possi-
ble to open the actual process edit window, Fig. 4(b), which we
built on the existing Oryx editor project2. The editor presents the
administrator with the following: a list of StixL elements along
with the task library; a ‘flow mapping’ pane to compose the ac-
tive workflow and wire elements and tasks in sequence; and a ‘data
mapping’ pane to map workflow variables to input and output pa-
rameters. These two views are necessary to define both the order in
which events happen, also called “execution flow”, and to wire the
input/output assignment between successive tasks in the workflow
(i.e., the “data flow”).

4.2 StixAgent: distributed monitoring and
control of heterogeneous hardware

StixAgent is the core component of the system, as it enables
distributed monitoring and control of remote devices. It is inter-
nally composed of six parts (Fig. 5):

• a “communication manager” that connects with other agents
via SOAP3 messages. It listens on a network socket for in-
coming messages and subsequently dispatches them to the
appropriate internal part.

• a “workflow manager”, which receives new workflows via

2http://www.oryx-project.org
3Throughout we use SOAP as the messaging protocol in Stix be-
cause of its extended support in Java, its lightweight requirements
and because it is efficiently verifiable against a schema.
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the communication manager and determines if they are ‘rel-
evant’ for the locally managed devices. If so, it stores them
to disk, transforms the XML representation in appropriate
memory instructions and passes them to the workflow en-
gine.

• a “workflow engine”, which registers and schedules the exe-
cution of a workflow by interpreting its XML representation.

• “log overlay” that keeps track of the most recent log mes-
sages originated locally or at the neighboring sites.

• a “storage manager” that provides a persistent storage with
an appropriate database interface.

• a “device manager”, which is responsible for communication
with locally managed devices (see §4.4).

4.2.1 Communication Manager
StixAgent consumes and distributes information by using

SOAP messages sent over TCP. Each StixAgent runs a server,
controlled by the Communication Manager module, which accepts
four kinds of XML messages: Log, Event, Workflow and Log-
Query. When the Communication Manager receives a message, it
determines the message type and finally passes it to the appropriate
part within the StixAgent.

When workflows are designed and deployed to the network,
StixAgent forwards them using a purpose-designed flavour of
directed flooding, which we call Pick and Forward and is imple-
mented between the Communication Manager and the Workflow
Manager (described in the next subsection). In this technique,
a StixAgent forwards a workflow to each of the neighboring
StixAgents except the one from which the workflow was re-



ceived (“Split-horizon”). In case any of the outgoing links is tem-
porarily unavailable, the workflow is locally cached.

4.2.2 Workflow Manager
The Workflow Manager component first performs XML and log-

ical validation on the incoming workflow. For example, the number
of starting and ending events are checked from the workflow meta-
data to assert that there are at least one of each. If validation passes
then the Workflow Manager distributes the workflow message to
the neighboring agents and also forwards it down to the Workflow
Engine. However, in order to preserve memory, not all workflows
are registered in memory by the agent. Instead, they evaluate the
query string contained in the Pool in order to determine whether
the particular workflow will ever be executed on the local devices.
Since queries can involve fields that change over time, the pick and
forward technique uses simple heuristics to determine whether an
agent should pick up and locally store a workflow passing by. For
example, a workflow for which the Pool query specifies a minimum
value on a monotonically varying field (e.g., the packet counter on
an interface) is considered true if the given value is higher than the
current field value. By adopting the Pick and Forward technique,
we are able to save on the memory usage within each StixAgent.

4.2.3 Workflow Engine
The Workflow Engine registers the workflow XML in memory,

creates a set of supporting data structures and manages the actual
workflow execution by interpreting its XML representation. Start
events can be triggered by a timer, a condition or an incoming mes-
sage. In all cases, the engine looks for the corresponding start
event, allocates a structure for local variables (which can be option-
ally declared “persistent”), creates a new thread for the workflow
and starts it. The thread interprets the workflow by following the
paths through the events and by dynamically loading tasks.

When the execution flows reaches a task, the engine tries to dy-
namically load the Java class defined for the task. If the binary
format of the task is not available locally, the Agent tries to down-
load it directly from the Task Library at the NOC. Each task offers
a runTask method as an entry point for execution. Once an end or
terminate event is reached, the engine deallocates the local variable
structure and ends the workflow thread thus freeing its resources.
Depending on the execution flow of a workflow (e.g., if there is a
loop in the workflow specification), the corresponding thread can
be active for an arbitrary long period of time in which case the as-
sociated local variable structure remains allocated.

4.2.4 Log Overlay and Storage Manager
Using the ‘Log event’ element, shown in Fig. 3, a workflow can

persistently save any piece of management data. We use the term
“log” to refer to such data; logs are represented as tuples containing
a timestamp, a reference to the agent that originated it and the data
payload. StixAgents coordinate to create a ‘log overlay’ storage
in which most recent or important logs generated at an agent are
automatically replicated at a few other agents in the network4. By
doing so, such log data remains available even when the originating
site is temporarily down or unreachable and is particularly useful
for troubleshooting activities.

For replication, we design a new mechanism called Sprinkle that
is simple and localized to reduce replication related network traffic.
With Sprinkle, a log to be replicated is sent by the originating agent

4Note that all logs generated at an agent are always stored locally
regardless of whether or not they are replicated. Locally generated
logs in the agent are managed separately from remote logs repli-
cated at the agent.

to jmax of its j-hop neighbors. Each receiving agent will store up
to jnum messages from the originating agent and will itself pass
on the data to kmax of its k-hop neighbors (with k > j). Each
recipient of such relayed data will store up to knum messages from
the originating agent (typically jnum > knum). The behavior of
the replication mechanism is thus controlled by six configurable pa-
rameters. We use j=1, k=2, jnum=1000, knum=100, jmax=2,
kmax=1 as default values in our implementation. To avoid stor-
ing data in poorly connected network regions, each StixAgent
avoids selection of those neighbors for replication that are solely
dependent on itself as a bridge to connect to other transmission
sites. Replicating agents determine the log to drop based on a drop-
ping policy whenever the number of logs for an originating agent
exceeds the limit (jnum or knum). In the current implementa-
tion, we use a simple policy to maintain only the most recent logs
from an agent. It is also possible to extend the log management at
replicating nodes to apply an aggregation operation to dynamically
reduce the number of remote logs maintained. The mechanism we
use for retrieving management information from the log overlay is
described in §4.3.

The Storage Manager component is a unified database abstrac-
tion, which hides the connection and transaction details of reading
and writing to the actual database.

4.2.5 Implementation
For implementation we decided to use Gumstix Overo Earth [19]

embedded boards. These feature a System-on-Chip (SoC) based on
a 600MHz ARM Cortex-A8 CPU, 256MB RAM and a microSD
slot. We added a 4GB memory card and a daughter board, which
provides a FastEthernet interface and an I2C bus. The bus is used
for StixControl, a small low-cost embedded board which we
designed to allow power monitoring and control (not discussed here
due to space limitations).

The whole setup runs with a single 5V supply and consumes less
than 2.5W. The overall cost of a single unit so configured is around
200 USD, but we expect the price to drop significantly for large-
scale deployments. Note that one such unit is deployed per trans-
mission site to implement the StixAgent functionality for all de-
vices managed through that site; this is acceptable when compared
to the cost of communication equipment involved in the deploy-
ment of a transmission site. We run a modified Linux 2.6.29 distri-
bution and, as Java Virtual Machine, the Sun “J2SE for Embedded
6” [20], which has the advantage of a reduced memory footprint
while being largely compatible with the “desktop” J2SE.

Our implementation of the Storage Manager uses the HSQL da-
tabase. In practical terms, assuming the average size of a log over-
lay tuples is 200 bytes, with a 3GB of storage space available in
each StixAgent, one could store in the local part of the log over-
lay more than twelve million records, which is reasonably sufficient
even for mid to long-term storage.

4.3 StixView: visualizing the distributed
network knowledge

StixView can be used to generate and view reports, which we
call “network perpectives”, from the data stored in the log overlay
in real time. To enable multiple users to operate concurrently, we
modelled perspectives as pages in a wiki engine. A network admin-
istrator can create new ones by using a simple syntax that, besides
allowing basic text formatting, also includes SQL-like primitives to
retrieve and select data from the log overlay. Query results can be
rendered in realtime as simple text, as tables or as line, bar or pie
charts.

We implemented a two-step rendering engine: in the first step,



(a) Sample of devices from our hardware testbed (b) Screenshot of StixView showing data ac-
quired from devices of different vendors

Figure 6: Monitoring of heterogenous hardware using Stix.

the perspective page source is compiled into HTML and sent to
the web client. Then, Javascript methods scan the document for
queries and interrogates the webserver via AJAX calls. A module
of the webserver is in charge of interpreting such queries and in turn
interrogate the log overlay. Such an approach provides a better user
experience — more complex and lengthy queries can be displayed
as soon as they are resolved without blocking the rendering of the
rest of the page while also allowing multiple queries to be resolved
in parallel.

The mechanism for retrieval of management information from
the log overlay works as follows: the server always tries to first
query the StixAgent to which the device in question is mapped
to. If that agent is unreachable, then the server queries each of the
agent’s j-hop neighbors, stopping when it receives the requested
data. If they are also unreachable, then the same procedure is re-
peated with each of the k-hop neighbors of the original target agent.
This on-demand retrieval mechanism results in just one query mes-
sage in the normal case and O(max. node degree) query messages
in the worst case, where max. node degree corresponds to the max.
number of neighbors of a transmission site in the network. As a
further optimization, the data received in response to prior queries
can be cached at the server for fast retrieval of the same data later
on. We discuss the impact of different failure patterns in §4.5.

4.4 Hardware Abstraction: the Device
Manager

Tasks and events communicate with managed devices through
the Device Manager (see Fig. 5), which acts as a hardware abstrac-
tion layer. Device drivers implement the interface for each device
type and are dynamically loaded as needed depending on the set of
devices under consideration. This allows us to flexibly define new
drivers to support new devices and to offer a common set of system
calls or an API (across all devices) to the workflow engine, while
throwing an exception when a system call is not supported by a
given device. If the StixAgent is running as a software agent,
then the Device Manager could just rely on Operating System tools,
otherwise via a management protocol (e.g., SNMP).

Implementation and Demonstration. Currently, for a hardware
based agent, we have implemented drivers for several different de-
vices making use of a handful of protocols (e.g., HTTP, SNMP,
SSH).

To demonstrate that Stix can support multi-vendor devices,
we deployed a small laboratory testbed composed of hardware
from different vendors, each equipped with a StixAgent, a

StixControl board. Specifically, we consider different types
of wireless devices: PcEngines Alix, Ubiquiti Powerstation2, and
Gateworks Cambria (left to right in Fig. 6(a)). Each of these prod-
ucts has a different architecture, and we deliberately configured
their software so that they necessitate a diverse spectrum of proto-
cols. The Alix board is managed over SNMP mostly using objects
in a private MIB tree, the Cambria device is controlled by issuing
commands in a shell over an SSH connection and the Powerstation2
board is managed via its web interface.

The Device Manager in Stix hides this heterogeneity via three
different device drivers operating over different management pro-
tocols, all presenting a common API. The result is that the adminis-
trator can design workflows without worrying about the actual type
of devices that will be executing them. For example, a ‘Reboot’
task can be used from the task library and deployed in a workflow„
it will then be up to the device manager to translate the internal
reboot() method call to the appropriate management procedure.
StixView is also capable of handling device heterogeneity, for
example in Fig. 6(b) we can observe a screenshot of values col-
lected in realtime from the three devices mentioned above.

4.5 Discussion
Robustness to Failures. For Stix, we are mainly concerned

about transmission site failures as they are the locations where
StixAgents are deployed. We identify three patterns of site
failures: random (uncorrelated) failures, where a site becomes
unreachable but does not affect connectivity to any other site;
spatially-correlated failures, in which a set of sites in a specific
geographical area is disconnected because of an event in that area
(e.g., due to a storm); and cascade failures that is a variant of the
spatially correlated failures resulting from connectivity failure to a
set of sites when a site effectively acting as a “bridge” to the rest of
the network fails randomly. The likelihood of such failures is de-
pendent on the redundancy in the network topology. The Sprinkle
replication mechanism in Stix is inherently robust to random fail-
ures. It can be configured to be robust against spatially correlated
failures (albeit at a higher replication related communication over-
head) when j or k are larger than the typical scope of such failures.
Careful selection of replication sites in Sprinkle helps improve ro-
bustness to cascade failures. In well-provisioned WISP networks
such as the one considered in our evaluation (§5), historical data
suggests that site failures are usually rare (as evident from the bot-
tom graph in Fig. 9), and when they do happen they are uncorre-
lated (mostly due to grid power outage).



(a) Coverage on Map (b) Topology of Point-to-Point Links

Figure 7: Coverage and topology of our partner NGI SpA’s BWA network in northern Italy. Each black dot in (a) corresponds to a transmis-
sion site. The red dot in (b) around the middle of the graph is the management server node at the NGI SpA’s NOC.
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Figure 8: The firmware upgrade dialogue between the centralized
management server and a CPE in the NGI SpA network.

Security. While securing access to management schemes is of
primary importance, the current Stix system does not provide
any specific application-level security mechanism, but it relies on
an underlying network-level separation (e.g., different VLANs) be-
tween user data traffic and management traffic. Segregation of traf-
fic is done routinely on carrier networks to prevent unauthorised
access to management interfaces, and can provide further advan-
tages such as prioritization against data traffic. As part of future
work, we plan to include a Public Key Infrastructure (PKI) in the
StixAgent code base. PKI mechanisms would allow develop-
ers of StixL “tasks” to sign their code, thus enabling the agents
to recognize them as trusted. Mandatory access control schemes
could also be included to limit users of the GUI to access only to
determined region of the network, classes of devices, etc.

To prevent new workflows from causing damage to the network

operation, a possible solution is to have a simple runtime simulation
scheme: workflow can be simulated and evaluated by adding a “dry
run” option in the engine of the StixAgent that, while allow-
ing read access to all devices configuration, will “trap” any write
access and keep modified variable state in Copy-on-Write (CoW)
registers. Our initial investigation shows that implementation of
this functionality in the current codebase is possible.

5. EVALUATION
The previous section described our implementation of the Stix

system and used it to demonstrate the capability for seamless mon-
itoring of multi-vendor devices. In this section, our focus is on
evaluating the scalability and efficiency of the Stix system, and
to demonstrate its utility for BWA network monitoring and control
through realistic case studies. We should also mention here that we
have just completed augmenting the Tegola network in the north-
west of Scotland [21] with a hardware based StixAgent at each
mast site. We intend to carry out the real-world evaluation of Stix
using this network.

5.1 Scalability
Here our aim is to quantify the communication and storage over-

head of the Stix system relative to the traditional centralized man-
agement approach for BWA network monitoring and control appli-
cations. To do this realistically, we leverage real topology and log-
ging data of our partner NGI SpA [3], which operates one of the
largest BWA network deployments in Europe. This network cov-
ers most of Northern Italy and its coverage spans more than a third
of towns (city councils) in the whole of Italy, covering 3045 from
a total of around 8000. As of Feb 2010, NGI SpA’s network had
259 transmission sites; 1,112 BTSs and 51,200 CPEs. Fig. 7 shows
the coverage on the map and topology showing point-to-point links
between transmission sites.

5.1.1 Distributed Control: A Firmware
Upgrade Scenario

Nowadays many features of wireless devices are implemented in
software, and service providers rely on firmware upgrades to ex-
pand the available services and for bug fixes. That makes firmware
upgrade a good candidate network control application to quantify
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Figure 9: Number of CPEs successfully upgraded in the first ten
days (from the time the upgrade was initiated by the server) com-
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period. Overall, there are 259 transmission sites and 51,200 CPEs
in the network. Number of CPEs online shows a diurnal pattern,
suggesting that some customers tend to switch off their CPEs at
night. Most of the time, almost all transmission sites are reachable.

communication overhead with Stix relative to the commonly used
approach. CPEs typically being larger in number relative to BTS
and PTP devices (also true for the NGI SpA network), we will focus
on the case of upgrading the firmware on all CPEs in the network
for this scalability assessment. In the NGI SpA network, configu-
ration and management happens over SNMP, and remote firmware
upgrade is supported via a commonly used “dual firmware” tech-
nique. This technique requires equipping the device with enough
persistent memory (i.e., onboard flash) to concurrently store two
firmware images. The BIOS then controls which of the two binaries
starts at boot based on a configuration parameter. Fig. 8 presents
a sequence graph illustrating the communication between the cen-
tralized management server and a CPE: the dialogue is composed
of four phases that begin with the server asking the CPE to down-
load a firmware image, which is then downloaded by the device
being upgraded over a separate session. Then the server asks the
CPE to try rebooting using the new image. If the process succeeds,
the change is made permanent, i.e., committed.

Clearly the success of such a centralized approach depends on
the existence of an end-to-end path between the server and the re-
mote device (CPE in this case). If the CPE is turned off or if there
is some kind of communication failure, the process may need to be
repeated multiple times. It should be noted that CPEs in the NGI
SpA network are outdoor devices installed by qualified personnel
on the customer’s rooftop, so they should more likely be turned on
at all times compared to indoor or mobile CPEs. Nevertheless, it
may still take time to upgrade each CPE in the network.

For a recent firmware upgrade performed by NGI SpA in Jan
2010, Fig. 9 shows, from top to bottom, the cumulative number of
devices upgraded for the first ten days of the process, the volume
of CPEs online in the network and reachable transmission sites at
a given time. After upgrades are swiftly performed for a day, the
process slows for two main reasons. The first is that the number
of CPEs online and still to be upgraded runs out, which cause the
centralized server to having to continuously “hunt” for them once
they appear on the network. The second is that a remote firmware
upgrade can fail even when a CPE is online for several reasons, for
which we give a break down in Fig. 10, slowing the process even
further.

Now coming to Stix, the network administrator could design a
simple workflow that runs on the StixAgent at each transmis-
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Figure 11: Comparison of estimated network traffic generated
for the CPE firmware upgrade application between the current ap-
proach used in the NGI SpA network and the Stix approach. The
shaded area corresponds to a total of 40GB.

sion site per BTS such that it gets triggered by the association of
a new CPE; at that point it checks whether an upgrade is needed
and accordingly performs it. Such a distributed control is bene-
ficial in three ways. The first is that the BTSs have knowledge
about the CPEs associated to them, thus they know exactly when
to trigger the upgrade operation without needing the central remote
server to continuously track for new CPE associations. The sec-
ond is that the firmware upgrade operation becomes entirely local,
making all data-intensive communication (firmware transfer in this
case) mostly between the CPE and its BTS; this may greatly reduce
the most significant cause of failure we recorded for online CPEs in
Fig. 10, i.e., “Firmware transfer: 12.2%”. The third is a remarkable
reduction in network traffic caused by the firmware upgrade. We
estimate this by calculating the total network traffic outgoing from
the central management server based on the fact that the firmware
image for the CPEs is 944KB in size. This is shown by the shaded
area in Fig. 11, which amounts to a total of 40GB in traffic vol-
ume. To obtain this plot, we have assumed that firmware transfer
for online CPEs succeeds in the first attempt as we do not have ac-
cess to the detailed time series of failures. Based on the observed
failure numbers we obtained (Fig. 10), we can estimate that more
than 96,000 firmware transfers had been done in the first 10 days of
the process. This roughly corresponds to 94GB of traffic volume,
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which is more than twice compared to the case with the simpli-
fying assumption in Fig. 11. Using Stix instead, only a single
transfer of the image to each StixAgent is sufficient to delegate
the upgrade operation to the individual StixAgents at different
transmission sites. This results in the total volume of data exiting
the central server with Stix to be around 1MB, significantly lower
than the currently used approach.

5.1.2 Distributed Monitoring using
the Stix Log Overlay

Here we study Sprinkle’s behavior by simulating it on NGI SpA’s
network topology, shown in Fig. 7(b), to see the impact of the
parameters j, k, jnum, knum, jmax and kmax. We use (h,
hnum, hmax) as generic variables that could correspond to either
(j, jnum, jmax) or (k, knum, kmax). Fig. 12 shows the average
number of logs stored at a replicating node on the log overlay as
a consequence of a continuous stream of logs from an originating
agent, calculated on the network of NGI SpA for different settings
of h, hnum and hmax. As seen from Fig. 12, the hmax parameter
can be used to bound the replication overhead in terms of storage
for a given set of h and hnum values. Note that h and hnum are
parameters used for controlling how far and how much to spread
the data on the log overlay around the source agent.

Let us consider an example with the following parameter settings
to show how the result in Fig. 12 can be used to estimate the storage
overhead on the log overlay due to the Sprinkle mechanism for the
NGI SpA network.

j = 1;jnum = 1000;jmax = 2

k = 2;knum = 100;kmax = 1

This means that, given an originating agent, up to two of its 1-
hop neighbors will keep its last 1,000 logs and that up to one of its
2-hop neighbors will keep its last 100 logs. The average number
of logs replicated on the log overlay for the agent can be read from
the graph as the sum of the hnum = 1000 curve at coordinates
(h = 1;hmax = 2) with the value of the hnum = 100 curve at
(h = 2;hmax = 1), which equals 1545. This essentially means
that 1000 (jnum5) logs from the originating agent result in 1545
logs (including duplicates) replicated on the log overlay. In general,
jnum logs from an agent can produce up to (jnum∗jmax+knum∗
kmax) logs on the overlay using Sprinkle. The overhead matches
the upper bound for a network topology with node degree greater

5Note that jnum (> knum) is the maximum number of unique logs
from the originating agent that can be replicated on the log overlay
at a given time.
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Figure 13: (a) Synthetic workflow used in the resource consump-
tion profiling of the Stix implementation; and (b) the resulting
network and memory overhead trace over time.

than or equal to jmax. Multiplying by the average size of a log
gives the storage overhead due to replication.

Now turning our attention to replication overhead in terms of
communication, with the Stix log overlay mechanism, to repli-
cate a log, the communication overhead is upper bounded by the
product of (j∗jmax+k∗kmax) and size of the log. This is how-
ever reasonable given that j, k, jmax and kmax are small constant
numbers (1 or 2 in our implementation). In contrast to the above,
the communication overhead of the traditional centralized manage-
ment approach is a function of the path length between the managed
device and management server, which can be long (as high as 11
hops in the NGI SpA network).

Retrieval of a log from the log overlay in general depends on
the failure probability of transmission sites, Sprinkle parameters
and the dropping policy used. Note that replicating nodes are
queried only when the original source of the log is down or un-
reachable. Also, prioritizing certain type of data during replication
(e.g., billing related data) would improve its availability in the event
of failures. In §4.5, we have discussed Sprinkle’s robustness to var-
ious failure patterns in general terms. A detailed analysis of the
probability of retrieving a log in the presence of failures and limited
available storage at replicating nodes requires further investigation.
We plan to address this issue as part of future work.

5.2 Efficiency: StixAgent Resource
Consumption Profiling

We now evaluate the efficiency of the StixAgent implementa-
tion in terms of memory and CPU utilization by stress testing it. For
this, we created a special synthetic workflow shown in Fig. 13(a)
that includes most of the StixL language elements: it is started
by a timer, then it invokes a Task object that gets the Signal to
Noise Ration (SNR) value from a particular wireless interface on
the device. That SNR value is sent to a workflow running on an-
other agent, which then answers back with the remote SNR value.
An Exclusive Gateway is used to determine whether the difference
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Figure 14: Testbed network used for the case studies.

between the two SNR values is above a threshold. If so, the “Re-
boot” Task is called, resulting in the local device getting restarted,
then a timer waits for the device to come back online. Otherwise, a
message is saved in the log overlay and the workflow terminates.

In Fig. 13(b), we show a record of the traffic generated on the
network and the memory allocated on the system heap inside the
Java Virtual Machine (JVM) at intervals of 10ms. We can observe
that the baseline memory footprint of StixAgent implementa-
tion is around 1200KB without any workflows registered or execut-
ing. When the workflow is received from the server and registered,
the memory footprint goes up by a modest amount of about 100KB.
When it starts executing, this workflow consumes less than 500KB
on top of the memory footprint at the time of registration. Although
our Workflow Engine implementation within the StixAgent has
not yet been optimized for memory savings, we believe that mem-
ory consumption of our implementation is quite acceptable (com-
pare with the total RAM size of 256MB). This experiment also al-
lows us to estimate the number of concurrent workflows (assuming
the one used is a typical workflow) that can run on a StixAgent
before the OS has to resort to memory paging. The CPU utiliza-
tion throughout the above experiment remained around 5%, which
is again a positive result.

5.3 Case Studies
We now present two realistic case studies to demonstrate the use-

fulness of the Stix system for BWA network management. For
these case studies, we created a small indoor lab wireless testbed
network as depicted in Fig. 14. We use commodity WiFi hardware
for the testbed network. Specifically, each of the PTP links are real-
ized using a different (unused) channel in the 5GHz band, whereas
BTS-CPE communication is over 2.4GHz band as in a typical in-
frastructure wireless LAN. These configurations together allow us
to create a BWA network in an indoor setting. A StixAgent
based on our implementation described in §4 is deployed at each
“Site”, representing a transmission site in the real world. Routing
in this testbed network is performed using OSPF, which also han-
dles link failures.

5.3.1 Seamless Device Reconfiguration
It is increasingly common for ISPs to have “all-wireless” net-

works in which both the access tier and the backhauling tier are
wireless. In these cases, network maintenance operations such as
upgrades and reconfigurations are disruptive operation for the cus-
tomer traffic. As an example, suppose that a major upgrade is to be
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Figure 16: The measured RTT over the network during the execu-
tion of the device reconfiguration workflow.

performed at Site B on our small testbed. Such an activity would
have impact on ongoing data traffic for the customers connected
to the local base station, and potentially for other areas of the net-
work. However, the administrator can design a simple workflow
like the one in Fig. 15 to trigger a series of tasks that reconfigure
the network routing prior to the upgrade and finally restore the pre-
vious routing state. We implemented this by providing an “OSPF
Control” object in the Stix Task library; it can modify the admin-
istrative cost of any local network link based on an input parameter.

The graph in Fig. 16 is a plot of the RTT measured from Site
A to Site D of our testbed. Prior to the upgrade, all the traffic
is routed via Site B, which offers the best path. When the work-
flow is triggered, the StixAgent running at Site B automatically
announces the unavailability of the local links, then waits for the
routing modification to be complete, then performs the device re-
configuration and finally announces the availability of the routes.
During the time when Site B is not available, traffic is routed via
Site C which, despite being a sub-optimal path initially, ensures
data packets continue to get routed between Site A and Site D. The
step-wise increase in the RTT is because of change in forward and
reverse paths at different times.

5.3.2 Adaptive Spectrum Management
Amount of spectrum available for BWA networks is limited, es-

pecially in unlicensed bands or those involving nominal license
cost (e.g., 5.8GHz band in the UK). This makes adaptive spectrum
management a crucial network management activity from a perfor-
mance standpoint. A simple approach for balancing the number of
users (CPEs) associated with a set of base stations (BTSs) has been
proposed in [22] for 802.11 networks. In this technique, a central
allocation server (which we call CAS) determines the spectrum al-
location between BTSs based on the number of CPEs at each site,
and communicates with each BTS to dynamically adjust the chan-
nel width and center frequency. The advantages over static channel
width allocation are an increased spectrum utilization and a better
per-CPE and per-site fairness.
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Figure 17: Workflows used for adaptive spectrum management
case study.
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Figure 18: Channel width and aggregate throughput at Site B over
time in the adaptive spectrum management case study.

We implemented this mechanism in Stix by designing the two
workflows shown in Fig. 17, which run on each StixAgent for
the co-located BTS. The first workflow on the left is triggered by
a Condition Start Event every time a new CPE associates or dis-
connects and causes a message to be sent to the CAS. On the other
hand, the second workflow on the right is triggered by a spectrum
allocation message sent by the CAS, modifies the center frequency
and channel width using the specified Task. In a real world sce-
nario, CAS could be implemented in a server that is external to the
network. In our case, it is instead implemented at one of the agents
in the network using a workflow (not shown due to lack of space)
that is triggered by messages from the workflow shown on the left
in Fig. 17.

We deployed the workflows on our testbed network, where a
CPE moves from being associated with one BTS to another BTS
while receiving a 5Mbps constant bitrate UDP stream from an ex-
ternal server. In this case, all the BTSs operate at the fixed 802.11g
datarate of 18Mbps and, initially, the BTS at Site B is allocated a
10MHz wide channel and has only one CPE connected, which is
able to receive the stream with 0% packet loss. However, when a
second CPE associates to the same BTS, saturation occurs and each
of the two streams drops to around 3.5Mbps. As Stix reconfig-
ures the network allocating 20MHz to the BTS at Site B, it is able
to deliver full 5Mbps again to each of the two associated CPEs (see
Fig. 18).

6. CONCLUSIONS
Given the size and complexity of emerging and future BWA de-

ployments, the design of usable management systems is hard. We
have taken a pragmatic approach to address this challenge. We
wanted our system to benefit three categories of users: commer-
cial operators of large-scale BWA networks, non-technical person-
nel in community deployments and researchers working on self-
management techniques. Our contributions can be summarized as
follows: (a) Stix introduces an easy-to-use visual paradigm to
ease the definition of management processes as workflows; (b) it

provides a distributed cooperative agent architecture to run such
workflowsand store results in the network, thereby reducing man-
agement traffic and improving scalability, a fact confirmed by our
evaluations; (c) it abstracts hardware heterogeneity and enables
“eyes and hands” control to devices being managed. Through our
case studies, we have also shown that Stix can be useful in easing
the implementation of self-management mechanisms. A key part
of our future work is to use Stix for real-world BWA network
management. We plan to do this beginning with our Tegola rural
network deployment.
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